
Séminaire Lotharingien de Combinatoire 78B (2017) Proceedings of the 29th Conference on Formal Power
Article #16, 12 pp. Series and Algebraic Combinatorics (London)

Minimal Length Maximal Green Sequences

Alexander Garver∗1, Thomas McConville†2 and Khrystyna Serhiyenko‡3

1Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal
2Department of Mathematics, Massachusetts Institute of Technology
3Department of Mathematics, University of California, Berkeley

Abstract. Maximal green sequences are important objects in representation theory,
cluster algebras, and string theory. It is an open problem to determine what lengths
are achieved by maximal green sequences of a quiver. We use the combinatorics of
surface triangulations to address this problem. Our main result is a formula for the
length of minimal length maximal green sequences of quivers defined by triangulations
of an annulus or a punctured disk.

Résumé. Les suites vertes maximales sont des objets importants dans la théorie des
représentation, les algèbres amassées et la théorie des cordes. C’est un problème ouvert
que de déterminer les longueurs que peuvent prendre les suites vertes maximales d’un
carquois. Nous utilisons la combinatoire des triangulations de surface pour étudier ce
problème. Notre résultat principal est une formule pour la longueur minimale des
suites vertes maximales de carquois définis par des triangulations d’un anneau ou
d’un disque perforé.
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1 Introduction

A maximal green sequence is a distinguished sequence of local transformations, known
as mutations, of a given quiver (i.e., directed graph). Maximal green sequences were
introduced by Keller in [13] in order to obtain combinatorial formulas for the refined
Donaldson-Thomas invariants of Kontsevich and Soibelman [14]. They are also impor-
tant in string theory [1], representation theory [3, 4], and cluster algebras [10].

Recently, there have been many developments on the combinatorics of maximal green
sequences (for example, see [11, 16, 15] and references therein). Our goal is to add to the
known combinatorics by developing a numerical invariant of the set of maximal green
sequences of Q: the length of minimal length maximal green sequences.
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This invariant is natural from the perspective of cluster algebras. Fixing a quiver Q
induces an orientation of the edges of the corresponding exchange graph, and the max-
imal green sequences of Q are in natural bijection with finite length maximal directed
paths in the resulting oriented exchange graph (see [3]). Examples of oriented exchange
graphs include the Hasse diagrams of Tamari lattices and Cambrian lattices of type A,
D, and E [17]. In these examples the minimal length maximal green sequences always
have length equal to the number of vertices of Q, but in general the minimal length of a
maximal green sequence is not known. Thus understanding the length of minimal length
maximal green sequences provides new information about oriented exchange graphs.

Our main result (Theorem 5) is a formula for this minimal length when Q is of cluster
type Dn and cluster type rAn´1 (i.e., Q is in the mutation class of a type Dn or of an
affine type An´1 Dynkin quiver). This number was calculated in cluster type A in [6].

In Section 2, we review the notions of quiver mutation and maximal green sequences.
We also recall some relevant results in cluster type A. We then state our first main result,
which allows one to calculate the length of minimal length maximal green sequences of
a quiver with finitely many cluster type A quivers attached to it (see Theorem 2).

In Section 3, we recall how triangulations of Riemann surfaces can be used to model
maximal green sequences of an important family of quivers. We use this model to
present Theorem 4, which is crucial to proving Theorem 2. We state Theorem 4 in
restricted generality in order to formulate it in a way that fits with our exposition.

Finally, in Section 4, we combine Theorem 2 and the combinatorics of surface trian-
gulations to find the length of minimal length maximal green sequences of quivers of
cluster type Dn and cluster type rAn´1.

2 Ice quivers and maximal green sequences

A quiver Q is a 4-tuple pQ0, Q1, s, tq, where Q0 “ rms :“ t1, 2, . . . , mu is a set of vertices,
Q1 is a set of arrows, and two functions s, t : Q1 Ñ Q0 defined so that for every α P Q1,
we have spαq α

ÝÑ tpαq. An ice quiver is a pair pQ, Fq with Q a quiver and F Ă Q0 a set of
frozen vertices where any i, j P F have no arrows of Q connecting them. By convention,
we assume Q0zF “ rns and F “ rn` 1, ms :“ tn` 1, n` 2, . . . , mu. We refer to elements of
Q0zF as mutable vertices. Any quiver Q is regarded as an ice quiver by setting F “ H.

If an ice quiver pQ, Fq is 2-acyclic (i.e., Q has no loops or 2-cycles), we can define a
local transformation of it called mutation. The mutation of pQ, Fq at a mutable vertex k,
denoted µk, produces a new ice quiver pµkQ, Fq by the three step process:

(1) For every 2-path i Ñ k Ñ j in Q, adjoin a new arrow i Ñ j.
(2) Reverse the direction of all arrows incident to k in Q.
(3) Remove any 2-cycles, and remove any arrows that connect two frozen vertices.
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From now on, we will only work with 2-acyclic quivers. We show an example of
mutation below with the mutable (respectively, frozen) vertices in black (respectively,
blue).

pQ, Fq = 1
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;; = pµ2Q, Fq

Let Mut(pQ, Fq) denote the collection of ice quivers obtainable from pQ, Fq by finitely
many mutations where such ice quivers are considered up to an isomorphism of quivers
that fixes the frozen vertices. We refer to Mut(pQ, Fq) as the mutation class of pQ, Fq. The
following description of the mutation class of cluster type An quivers will be useful.

Lemma 1. [5, Prop. 2.4] A connected quiver Q with n vertices is of cluster type An if and only
if Q satisfies the following:

iq All non-trivial cycles in the underlying graph of Q are oriented and of length 3.
iiq Any vertex has degree at most 4.

iiiq If a vertex has degree 4, then two of its adjacent arrows belong to one 3-cycle, and the
other two belong to another 3-cycle.

ivq If a vertex has degree 3, then two of its adjacent arrows belong to a 3-cycle, and the
third arrow does not belong to any 3-cycle.

The framed quiver of Q is the ice quiver pQ where pQ0 :“ Q0 \ rn` 1, 2ns, F “ rn`
1, 2ns, and pQ1 :“ Q1\ti Ñ n` i : i P rnsu. A mutable vertex i of some quiver Q P Mutp pQq
is green (respectively, red) if there are no arrows in Q of the form i Ð n` j (respectively,
i Ñ n` j) for some j P rns. Sign-coherence of c-vectors [7, Theorem 1.7] implies that any
mutable vertex of a quiver Q P Mutp pQq is either green or red.

Definition 1 ([13]). A maximal green sequence of Q is a sequence i “ pi1, . . . , ikq of mutable
vertices of pQ where

iq for all j P rks vertex ij P rns is green in µij´1 ˝ ¨ ¨ ¨ ˝ µi1p
pQq, and

iiq each mutable vertex i P rns of µip pQq is red where µi :“ µik ˝ ¨ ¨ ¨ ˝ µi1 .

It is an open problem to determine what positive integers can be realized as lengths
of maximal green sequences of a quiver Q. In [3, Lemma 2.20], it is shown that if Q is
acyclic, then Q has a maximal green sequence of length #Q0 and there are no shorter
maximal green sequences of Q. The following theorem is the first to address this open
problem for an infinite family of quivers, many of which are not acyclic.

Theorem 1. [6] The length of a minimal length maximal green sequence of a cluster type An
quiver Q is n` #t3-cycles of Qu.
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Our first main result (Theorem 2) shows that the problem of finding the minimal
length of maximal green sequences of a quiver reduces to solving this problem for quiv-
ers Q without any cluster type A quivers attached to Q as in the following definition.
The proof of Theorem 2 uses properties of the consistent scattering diagram associated
with quiver Q, which are proven in [12]. We refrain from discussing scattering diagrams
here. Instead, we emphasize the applications of Theorem 2 in this paper.

Definition 2. Given a quiver Q let rQ be a quiver composed of full connected subquivers Q, Q1,
Q2, . . . , Qk, such that all of the following conditions hold:

‚ Qi
0 XQ0 “ txiu,

‚ Qi
0 XQj

0 “
!

txiu if xi “ xj
∅ otherwise

,

‚ for every arrow in rQ, whenever one of the endpoints belongs to Qi
0ztxiu then the other

endpoint belongs to Qi
0,

‚ for every i the quiver Qi is of cluster type A.

rQ: Q

Q1

Q2

Qk
xk

x1

x2

Theorem 2. Let rQ be a quiver as in Definition 2. Then the minimal length of a maximal green
sequence of rQ is lmin ` l1

min ` l2
min ` ¨ ¨ ¨ ` lk

min ´ k where li
min (respectively, lmin) is the minimal

length of a maximal green sequence for Qi (respectively, Q).

3 Surface triangulations and shear coordinates

Let S denote an oriented Riemann surface, and let M Ă S be a finite subset of S where
we require that for each component B of BS we have BXM ‰ H. We call the elements
of M marked points and the elements of MzpMXBSq punctures. We call the pair pS, Mq
a marked surface4. We henceforth fix a marked surface pS, Mq.

We define an arc on S to be a curve γ in S such that

4We require that pS, Mq is not a sphere with one, two, or three punctures; a disc with one, two, or three
marked points on the boundary; or a punctured disc with one marked point on the boundary.
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Figure 1: A flip connecting two trian-
gulations of an annulus.
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Figure 2: The (cluster type rA2) quiver
QT defined by a triangulation T.

‚ its endpoints are marked points;
‚ γ does not intersect itself, except that its endpoints may coincide;
‚ except for the endpoints, γ is disjoint from M and from the boundary of S;
‚ γ does not cut out an unpunctured monogon or and unpunctured digon. (In

other words, γ is not contractible into M or onto the boundary of S.)
An arc γ is considered up to isotopy relative to the endpoints of γ. We say two arcs

γ1 and γ2 on S are compatible if they are isotopic relative to their endpoints to curves
that are nonintersecting except possibly at their endpoints. A triangulation of pS, Mq,
denoted T, is defined to be a maximal collection of pairwise compatible arcs.

One moves between triangulations by local moves called flips. Define the flip of an
arc γ P T as the unique arc γ1 ‰ γ that produces a triangulation T1 “ pTztγuq \ tγ1u
(see Figure 1). If M contains punctures, there exist triangulations containing self-folded
triangles (e.g., the region of S bounded by γ3 and γ4 in Figure 3 is a self-folded triangle).
We refer to the arc γ3 (respectively, γ4) in Figure 3 as a loop (respectively, a radius).

As the flip of a radius is not defined, tagged arcs were introduced in [8] to obtain
such a notion. A tagged arc ιpγq is obtained from an arc γ that does not cut out a
once-punctured monogon and “tagging” its ends either as plain or notched so that:

• an end of γ lying on the boundary of S is tagged plain; and
• both ends of a loop have the same tagging.

We use the symbol ’ to indicate that an end of an arc is notched. We say two tagged
arcs ιpγ1q and ιpγ2q are compatible if the following hold:

• Their underlying arcs γ1 and γ2 are the same, and the tagged arcs ιpγ1q and ιpγ2q

have the same tagging at exactly one endpoint.
• Their underlying arcs γ1 and γ2 are distinct and compatible, and any common

endpoints of ιpγ1q and ιpγ2q have the same tagging.

A tagged triangulation of pS, Mq is a maximal collection of pairwise compatible tagged
arcs. It follows from the construction that any arc in a tagged triangulation can be
flipped. For example, see Figure 3 for an example of how to flip the radius γ4.
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Figure 3: The map identifying a triangulation of a punctured disk as a tagged tri-
angulation of a punctured disk and the flip of the tagged arc γ4 from that tagged
triangulation.

Each triangulation T of S defines a signed adjacency quiver QT by associating ver-
tices to arcs and arrows based on oriented adjacencies (see Figure 2). More precisely,
given a triangulation T consider a map π : T Ñ T on the set of arcs defined as follows. If
γ is a radius of a self-folded triangle, then let πpγq be the corresponding loop, otherwise
let πpγq “ γ. Then the quiver QT consists of vertices iγ for every γ P T and arrows
iγ Ñ iγ1 for every non self-folded triangle with sides πpγq and πpγ1q such that πpγq

follows πpγ1q in the clockwise order. Finally, remove any 2-cycles from QT to produce a
2-acyclic quiver5. The following theorem shows that flips are compatible with mutations.

Theorem 3. [8] Given a tagged triangulation T and a tagged arc γ P T, let T1 be obtained from
T by flipping γ. Then µiγpQTq “ QT1 .

We now show how shear coordinates provide a way to describe maximal green se-
quences geometrically. Recall that a fixed orientation O of a surface S induces an ori-
entation O on each component of BS such that the surface S lies to the right of every
component. If γ is a tagged arc in S, the elementary lamination `γ is a curve that runs
along γ within a small neighborhood of it. If γ has an endpoint M on the boundary
BS, then `γ begins at a point M1 R M on BS located near M in the direction of O, and
proceeds along γ. If γ has an endpoint at a puncture p, then `γ spirals into p: clockwise
if γ is notched at p, and counterclockwise if it is tagged plain (e.g., see Figure 4). A set
of curves L is a lamination if it consists of elementary laminations arising from some
pairwise compatible tagged arcs.

Definition 3. Let L be a lamination, and let T be a triangulation. For each arc γ P T, that is not a
radius of a self-folded triangle, the shear coordinate6 of L with respect to T, denoted by bγpT, Lq,
is defined as a sum of contributions from all intersections of curves in L with γ. Specifically, such
an intersection contributes +1 (respectively, ´1) to bγpT, Lq if the corresponding segment of

5For the definition of QT where T is any tagged triangulation, we refer the reader to [8].
6For the definition of shear coordinates where T is any tagged triangulation, we refer the reader to [9].
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O

O

’

Figure 4: Lamination corresponding
to the given set of arcs.

`1

`2

γ δ

Figure 5: The shear coordinate of γ

with respect to `1 is `1, and the shear
coordinate of δ with respect to `2 is
´1.

a curve in L cuts through the quadrilateral surrounding γ as shown in Figure 5 on the left
(respectively, right).

Definition 4. Fix T “ tγ1, . . . , γnu, T1 a tagged triangulation obtained from T by a sequence of
flips, and γ1 P T1. Define the c-vector of γ1 to be the integer vector cpγ1, T1q :“ pbγ1pT1, `γjqq P

Zn. Define γ1 to be green (respectively, red) if bγ1pT1, `γjq ě 0 (respectively, bγ1pT1, `γjq ď 0) for
each γj P T.

By [9, Proposition 17.3], tagged triangulations and elements of Mutp pQTq are in bijec-
tion. Thus the ice quiver Q P Mutp pQTq corresponding to T1 has QT1 as its mutable part
and its other arrows are given by the equations bγ1pT1, `γjq “ #tiγ1 Ñ n ` ju ´ #tiγ1 Ð

n` ju, one for each γ1 P T1 and γj P T. Moreover, tagged arc γ1 P T1 is green (respectively,
red) if and only if vertex iγ1 P Q0 is green (respectively, red). Additionally, [4] implies
that a maximal green sequence i “ pi1, . . . , ikq of QT is equivalent to the sequence of
c-vectors cpiq :“ pcpγp1q, T1q, . . . , cpγpkq, Tkqq where γpjq is the tagged arc corresponding to
vertex ij P pµij´1 ¨ ¨ ¨ µi1p

pQTqq0 and the mutable part of µij ¨ ¨ ¨ µi1p
pQTq is QTj .

Theorem 4. Let Q: be a full subquiver of QT whose vertices correspond to γj1 , . . . , γj` and let
i “ pi1, . . . , ikq be a maximal green sequence of QT. Then the sequence c: obtained by removing
from cpiq every c-vector with nonzero entries at positions other than j1, . . . , j` is the sequence of
c-vectors of a maximal green sequence of Q:.

The above is essentially proved in [16], using the consistent scattering diagram of QT.
Moreover, the same technique proves Theorem 4 for a general 2-acyclic quiver Q with
the c-vectors of Q appropriately defined. This more general version of Theorem 4 is an
ingredient in the proof of Theorem 2.
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Figure 6: Type I quivers

Q: Q1 Q2dc
a

b

Figure 7: Type II quivers
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Figure 8: Type III quivers
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ak

bk

Figure 9: Type IV quivers

4 Quivers of cluster type Dn and rAn´1

To present our results, we need to recall the classification of cluster type Dn quivers. By
[18, Theorem 3.1], the mutation class of a type Dn quiver where n ě 4 consists of four
families of quivers. Before presenting these, we say a vertex c of Q is a connecting vertex
if it has degree at most 2, and if it has degree 2, it belongs to a 3-cycle of the same quiver.

A quiver Q is of Type I (see Figure 6) if and only if Q has the following properties:
• it has a full subquiver of the form a Ø c Ø b (the notation a Ø c to indicates that

there exists a single arrow in Q connecting a and c),
• the full subquiver Q1 of Q on the vertices Q0zta, bu is of cluster type A, and
• the vertex c is a connecting vertex of Q1.

A quiver Q is of Type II (see Figure 7) if and only if Q has the following properties:
• it has a full subquiver of the form shown in Figure 7 whose vertices are a, b, c, d,
• the subquiver Q1 obtained by removing vertices a and b and the arrow c Ñ d

consists of two cluster type A quivers Q1 and Q2, and
• the vertex c (respectively, d) is a connecting vertex of Q1 (respectively, Q2).

A quiver Q is of Type III (see Figure 8) if and only if Q has the following properties:
• it has a full subquiver as shown in Figure 8 whose vertices are a, b, c, d,
• the full subquiver Q1 of Q on the vertices Q0zta, bu consists of two connected quiv-

ers Q1 and Q2, each of which is of cluster type A, and
• the vertex c (respectively, d) is a connecting vertex of Q1 (respectively, Q2).

A quiver Q is of Type IV (see Figure 8) if and only if Q has the following properties:



Minimal Length Maximal Green Sequences 9

• it has a full subquiver R that is an oriented k-cycle where k ě 3, R0 “ ta1, a2, . . . , aku,
and R1 “ tai Ñ ai`1 : i P rk´ 1su \ tak Ñ a1u,
• for each arrow α P R1, there may be a vertex bi P Q0zR0 that is in a 3-cycle bi Ñ

ai
α
Ñ ai`1 Ñ bi, which is a full subquiver of Q, but there are no other vertices in

Q0zR0 that are connected to vertices of R,
• the full subquiver Q1 obtained from Q by removing the vertices and arrows of the

subquiver R consists of the quivers tQiuiPrks some of which may be empty quivers,
and where each quiver Qi is of cluster type A and has bi as a connecting vertex.

The cluster type rAn´1 quivers can be described in a very similar way to the Type
IV quivers (see [2]). However, the only oriented cycles in cluster type rAn´1 quivers are
3-cycles. Another important distinction between Dn and rAn´1 quivers is that Mutp pQq is
finite (respectively, infinite) if Q is of cluster type Dn (respectively, rAn´1).

Theorem 5. Let l denote the length of a minimal length maximal green sequence of a quiver rQ.
i) If rQ is of Type I or is of cluster type rAn´1, then l “ n` #t3-cycles in rQu.

ii) If rQ is of Type II, then l “ n` 1` #t3-cycles in Q1u ` #t3-cycles in Q2u.
iii) If rQ is of Type III, then l “ n` 2` #t3-cycles in rQu.
iv) If rQ is of Type IV, then l “ n` k´ 2` #tai : degpaiq “ 4u `

řk
i“1 #t3-cycles in Qiu.

To prove Theorem 5, first, observe that rQ satisfies Definition 2. One thus applies
Theorem 2 to reduce the problem of calculating l to calculating the minimal length of a
maximal green sequence of Q, which is obtained by removing all vertices of rQ belonging
to Qi

0z
rQ0 for some i. If rQ is of Type I, II, or III, the resulting family of quivers Q consists

of exactly six quivers. Thus, it is a finite calculation to verify the theorem.
On the other hand, if rQ is of Type IV or of cluster type rAn´1, the same family of quiv-

ers Q is infinite. However, one can parameterize this family of quivers by triangulations
of the once-punctured disk, in the former case, and triangulations of the unpunctured
annulus, in the latter case, with certain conditions on the triangles. We then use the
corresponding triangulation to construct a minimal length maximal green sequence of
each quiver Q. We will sketch this approach when Q is a Type IV quiver.

Let pS, Mq be the once-punctured disk with n marked points on the boundary and
unique puncture p. A triangulation T defining Q is determined by the following prop-
erties (see the top left triangulation in Figure 10):

‚ if γ is not connected to p, there is a triangle whose only internal arc is γ, and
‚ if γ is connected to p, it is tagged plain at p.

The triangulation T is the unique triangulation satisfying QT “ Q, up to the action of
the mapping class group of the surface and up to simultaneously changing the tagging
of all ends of arcs connected to p.

The maximal green sequence we construct has five components, which we denote
by i1, i2, i3, i4, and i5. We construct the sequence in the context of Figure 10 wherein
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γas , γbt P T are the arcs corresponding to vertices as, bt P QT, respectively. We do not
justify it here, but the length of i is n` k´ 2` #tai : degpaiq “ 4u7.

The first components, i1 “ pa7, b6, a4, b3, b2, a2, b1q and i2 “ pa3, a5, a6, a1q, perform flips
at each of the arcs in the initial triangulation T exactly once so that the total length of
these two sequences is n. The vertices in ij with j “ 1, 2 are ordered so that if two vertices
in ij are connected by an arrow α P pQTq1, then spαq is mutated before tpαq in ij.

The sequence i3 consists of all green vertices of µi2µi1p
pQTq where flipping the corre-

sponding arcs produces ones that can be obtained from arcs of T not connected to p by
moving their endpoints clockwise along the boundary to the next two marked points. As
shown in Figure 10, we have i3 “ piαq. Moreover, the new arc α1 is obtained by moving
the endpoints of γb2 clockwise along the boundary to the next two marked points.

The sequence i4 consists of all vertices of µi3µi2µi1p
pQTq whose corresponding tagged

arcs are connected to p and is tagged plain at p. Similar to i2, we also require that if two
vertices in i4 are connected by an arrow α P µi3µi2µi1p

pQTq, then spαq is mutated before
tpαq in i4. As shown in Figure 10, we have i4 “ piδq. It turns out that the length of i3 plus
the length of i4 is #tai : degpaiq “ 4u.

Lastly, the sequence i5 is defined inductively. First, mutate at all green vertices of
µi4µi3µi2µi1p

pQTq whose corresponding tagged arcs appear in a triangle whose other two
sides are tagged arcs notched at p. In the context of Figure 10, one mutates at the
vertices corresponding to σ

p1q
1 and σ

p1q
2 . Next, repeat this process, each time with the

new ice quiver, until there are no remaining green vertices. In the example in Figure 10,
this process must be repeated twice: in the second (respectively, third) iteration one
mutates at the vertices corresponding to σ

p2q
1 and σ

p2q
2 (respectively, σ

p3q
1 ). The length of

i5 is k´ 2.
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